Realization of high-luminous-efficiency InGaN light-emitting diodes in the “green gap” range
نویسندگان
چکیده
Light-emitting diodes (LEDs) in the wavelength region of 535-570 nm are still inefficient, which is known as the "green gap" problem. Light in this range causes maximum luminous sensation in the human eye and is therefore advantageous for many potential uses. Here, we demonstrate a high-brightness InGaN LED with a normal voltage in the "green gap" range based on hybrid multi-quantum wells (MQWs). A yellow-green LED device is successfully fabricated and has a dominant wavelength, light output power, luminous efficiency and forward voltage of 560 nm, 2.14 mW, 19.58 lm/W and 3.39 V, respectively. To investigate the light emitting mechanism, a comparative analysis of the hybrid MQW LED and a conventional LED is conducted. The results show a 2.4-fold enhancement of the 540-nm light output power at a 20-mA injection current by the new structure due to the stronger localization effect, and such enhancement becomes larger at longer wavelengths. Our experimental data suggest that the hybrid MQW structure can effectively push the efficient InGaN LED emission toward longer wavelengths, connecting to the lower limit of the AlGaInP LEDs' spectral range, thus enabling completion of the LED product line covering the entire visible spectrum with sufficient luminous efficacy.
منابع مشابه
Efficiency droop behaviors of InGaN/GaN multiple-quantum-well light-emitting diodes with varying quantum well thickness
InGaN/GaN multiple-quantum-well MQW light-emitting diodes with varied InGaN quantum well thicknesses are fabricated and characterized. The investigation of luminous efficiency versus current density reveals a variety of efficiency droop behaviors. It is found that the efficiency droop can be drastically reduced by increasing the quantum well thickness of the MQW structures. On the other hand, r...
متن کاملApproaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells.
Optimization of internal quantum efficiency (IQE) for InGaN quantum wells (QWs) light-emitting diodes (LEDs) is investigated. Staggered InGaN QWs with large electron-hole wavefunction overlap and improved radiative recombination rate are investigated for nitride LEDs application. The effect of interface abruptness in staggered InGaN QWs on radiative recombination rate is studied. Studies show t...
متن کاملGaN microdisk light emitting diodes
Articles you may be interested in Suppression of electron overflow and efficiency droop in N-polar GaN green light emitting diodes Appl. High-density plasma-induced etch damage of InGaN/GaN multiple quantum well light-emitting diodes
متن کاملCORRIGENDUM: A novel wavelength-adjusting method in InGaN-based light-emitting diodes
The pursuit of high internal quantum efficiency (IQE) for green emission spectral regime is referred as "green gap" challenge. Now researchers place their hope on the InGaN-based materials to develop high-brightness green light-emitting diodes. However, IQE drops fast when emission wavelength of InGaN LED increases by changing growth temperature or well thickness. In this paper, a new wavelengt...
متن کاملCharacteristics of InGaN-Based UV/Blue/Green/Amber/Red Light-Emitting Diodes
Highly efficient light-emitting diodes (LEDs) emitting ultraviolet (UV), blue, green, amber and red light have been obtained through the use of InGaN active layers instead of GaN active layers. Red LEDs with an emission wavelength of 675 nm, whose emission energy was almost equal to the band-gap energy of InN, were fabricated. The dependence of the emission wavelength of the red LED on the curr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 5 شماره
صفحات -
تاریخ انتشار 2015